Control of a Hydraulic Generator Regulating System Using Chebyshev-Neural-Network-Based Non-Singular Fast Terminal Sliding Mode Method
نویسندگان
چکیده
A hydraulic generator regulating system with electrical, mechanical, and constitution is a complex nonlinear system, which analyzed in this research. In the present study, dynamical behavior of investigated. Afterward, input/output feedback linearization theory exerted to derive controllable model system. Then, chaotic controlled using robust controller that uses Chebyshev neural network as disturbance observer combination non-singular terminal sliding mode control method. Moreover, convergence response desired output presence uncertainty unexpected disturbances demonstrated through Lyapunov stability theorem. Finally, effectiveness appropriate performance proposed scheme terms robustness against are numerical simulations.
منابع مشابه
Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملTerminal Sliding Mode Control Using Adaptive Fuzzy-Neural Observer
We propose a terminal sliding mode control (SMC) law based on adaptive fuzzy-neural observer for nonaffine nonlinear uncertain system. First, a novel nonaffine nonlinear approximation algorithm is proposed for observer and controller design. Then, an adaptive fuzzy-neural observer is introduced to identify the simplified model and resolve the problem of the unavailability of the state variables...
متن کاملNeural network-based sliding mode control of electronic throttle
In this paper a neural network based sliding mode controller for electronic throttle is proposed. Electronic throttle is considered as an uncertain linear system. The uncertainties, which consist of an unknown friction and spring torque are estimated by the neural network whose parameters are adapted in an on-line fashion. Control and adaptive laws guarantee the boundedness of all signals in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11010168